Chapter 11 stats code and data

This commit is contained in:
anthonydb 2020-10-25 16:32:38 -04:00
parent 3ca79909ce
commit 71bedcdf49
6 changed files with 6567 additions and 77 deletions

View File

@ -19,9 +19,8 @@ CREATE TABLE acs_2014_2018_stats (
);
COPY acs_2014_2018_stats
FROM '/Users/adebarros/Dropbox/DataMonky/Book-Writing/PracticalSQL_2e/Code-Repo/Chapter_11/acs_2014_2018_stats.csv'
--FROM 'C:\YourDirectory\acs_2014_2018_stats.csv'
WITH (FORMAT CSV, HEADER, DELIMITER ',');
FROM 'C:\YourDirectory\acs_2014_2018_stats.csv'
WITH (FORMAT CSV, HEADER);
SELECT * FROM acs_2014_2018_stats;
@ -64,8 +63,8 @@ SELECT round(
) AS r_squared
FROM acs_2014_2018_stats;
-- Bonus: Additional stats functions.
-- Variance
-- Bonus: Additional stats functions
-- Variance of the entire population
SELECT var_pop(median_hh_income)
FROM acs_2014_2018_stats;
@ -73,28 +72,24 @@ FROM acs_2014_2018_stats;
SELECT stddev_pop(median_hh_income)
FROM acs_2014_2018_stats;
-- Covariance
SELECT covar_pop(median_hh_income, pct_bachelors_higher)
FROM acs_2014_2018_stats;
-- Listing 11-6: The rank() and dense_rank() window functions
CREATE TABLE widget_companies (
id bigserial,
company varchar(30) NOT NULL,
id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY,
company text NOT NULL,
widget_output integer NOT NULL
);
INSERT INTO widget_companies (company, widget_output)
VALUES
('Morse Widgets', 125000),
('Springfield Widget Masters', 143000),
('Best Widgets', 196000),
('Acme Inc.', 133000),
('District Widget Inc.', 201000),
('Clarke Amalgamated', 620000),
('Stavesacre Industries', 244000),
('Bowers Widget Emporium', 201000);
('Dom Widgets', 125000),
('Ariadne Widget Masters', 143000),
('Saito Widget Co.', 201000),
('Mal Inc.', 133000),
('Dream Widget Inc.', 196000),
('Miles Amalgamated', 620000),
('Arthur Industries', 244000),
('Fischer Worldwide', 201000);
SELECT
company,
@ -106,8 +101,8 @@ FROM widget_companies;
-- Listing 11-7: Applying rank() within groups using PARTITION BY
CREATE TABLE store_sales (
store varchar(30),
category varchar(30) NOT NULL,
store text NOT NULL,
category text NOT NULL,
unit_sales bigint NOT NULL,
CONSTRAINT store_category_key PRIMARY KEY (store, category)
);
@ -131,9 +126,35 @@ SELECT
rank() OVER (PARTITION BY category ORDER BY unit_sales DESC)
FROM store_sales;
-- Listing 11-8: Creating a rolling average for export data
CREATE TABLE us_exports (
year smallint,
month smallint,
citrus_export_value bigint,
soybeans_export_value bigint
);
--
COPY us_exports
ROM 'C:\YourDirectory\us_exports.csv'
WITH (FORMAT CSV, HEADER);
-- View the monthly citrus data
SELECT year, month, citrus_export_value
FROM us_exports
ORDER BY year, month;
-- Calculate rolling average
SELECT year, month, citrus_export_value,
round(
avg(citrus_export_value)
OVER(ORDER BY year, month
ROWS BETWEEN 11 PRECEDING AND CURRENT ROW), 0)
AS twelve_month_avg
FROM us_exports
ORDER BY year, month;
-- Listing 11-9: Creating and filling a table for Census county business pattern data
CREATE TABLE cbp_naics_72_establishments (
state_fips text,
@ -148,61 +169,22 @@ CREATE TABLE cbp_naics_72_establishments (
);
COPY cbp_naics_72_establishments
FROM '/Users/adebarros/Dropbox/DataMonky/Book-Writing/PracticalSQL_2e/Code-Repo/Chapter_11/cbp_naics_72_establishments.csv'
--FROM 'C:\YourDirectory\cbp_naics_72_establishments.csv'
WITH (FORMAT CSV, HEADER, DELIMITER ',');
FROM 'C:\YourDirectory\cbp_naics_72_establishments.csv'
WITH (FORMAT CSV, HEADER);
SELECT * FROM cbp_naics_72_establishments LIMIT 5;
SELECT cbp.state_fips || cbp.county_fips AS fips,
-- Listing 11-10: Finding business rates per thousand population in counties with 50,000 or more people
SELECT
cbp.county,
cbp.st,
cbp.establishments,
pop.pop_est_2018,
round(
(cbp.establishments::numeric / pop.pop_est_2018) * 1000, 1
) AS estabs_per_1000
FROM
cbp_naics_72_establishments cbp LEFT JOIN us_counties_pop_est_2019 pop
ON cbp.state_fips = pop.state_fips
round( (cbp.establishments::numeric / pop.pop_est_2018) * 1000, 1 )
AS estabs_per_1000
FROM cbp_naics_72_establishments cbp LEFT JOIN us_counties_pop_est_2019 pop
ON cbp.state_fips = pop.state_fips
AND cbp.county_fips = pop.county_fips
WHERE pop.pop_est_2018 >= 50000
ORDER BY cbp.establishments::numeric / pop.pop_est_2018 DESC;
-- OLD first edition
-- Listing 11-8: Create and fill a 2015 FBI crime data table
CREATE TABLE fbi_crime_data_2015 (
st varchar(20),
city varchar(50),
population integer,
violent_crime integer,
property_crime integer,
burglary integer,
larceny_theft integer,
motor_vehicle_theft integer,
CONSTRAINT st_city_key PRIMARY KEY (st, city)
);
COPY fbi_crime_data_2015
FROM 'C:\YourDirectory\fbi_crime_data_2015.csv'
WITH (FORMAT CSV, HEADER, DELIMITER ',');
SELECT * FROM fbi_crime_data_2015
ORDER BY population DESC;
-- Listing 11-9: Find property crime rates per thousand in cities with 500,000
-- or more people
SELECT
city,
st,
population,
property_crime,
round(
(property_crime::numeric / population) * 1000, 1
) AS pc_per_1000
FROM fbi_crime_data_2015
WHERE population >= 500000
ORDER BY (property_crime::numeric / population) DESC;

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

225
Chapter_11/us_exports.csv Normal file
View File

@ -0,0 +1,225 @@
year,month,citrus_export_value,soybeans_export_value
2002,1,81939159,794068114
2002,2,91145699,659050185
2002,3,115051310,345893170
2002,4,86779722,246909123
2002,5,45814736,247943895
2002,6,36015544,249802757
2002,7,18333834,339539503
2002,8,15058915,243321058
2002,9,13271588,191216281
2002,10,26590694,812436788
2002,11,53639481,919308934
2002,12,61170830,701085611
2003,1,79069804,991310046
2003,2,91905948,944352353
2003,3,112045016,588018642
2003,4,82714650,424072090
2003,5,65807931,235398657
2003,6,37152480,221053757
2003,7,22025720,250246921
2003,8,15347844,212711390
2003,9,12997666,230478511
2003,10,37309973,1246026488
2003,11,54333917,1457358978
2003,12,69999550,1164256986
2004,1,94487872,968427385
2004,2,116664557,714701271
2004,3,148210057,674486035
2004,4,89528321,304579006
2004,5,45931753,189713599
2004,6,32178545,210817937
2004,7,21438553,141448559
2004,8,10944527,100759947
2004,9,9966250,303876760
2004,10,17371687,1053528352
2004,11,46297575,1070602202
2004,12,59646056,953920362
2005,1,79290510,785578490
2005,2,92361489,843596786
2005,3,113556560,698225482
2005,4,103259234,412721537
2005,5,57853049,315114212
2005,6,33253877,260911572
2005,7,20652393,160938521
2005,8,13516221,210525670
2005,9,12209375,226293704
2005,10,16136054,878190446
2005,11,39164454,909878711
2005,12,69586703,580244470
2006,1,90647111,732623108
2006,2,105474601,719732967
2006,3,119582761,673898856
2006,4,85317096,282056498
2006,5,79193517,270076101
2006,6,44478040,262376265
2006,7,17752553,309444780
2006,8,12519827,326320838
2006,9,9924518,402749394
2006,10,27667251,1182460249
2006,11,60010909,889549580
2006,12,68907983,897594351
2007,1,105326246,1092606423
2007,2,90297551,990018125
2007,3,120445250,784247691
2007,4,96608536,575051574
2007,5,53944346,336040732
2007,6,27553378,410972130
2007,7,16198822,329393569
2007,8,9461235,435126692
2007,9,9000139,571788118
2007,10,29664916,1380861708
2007,11,78976704,1378173182
2007,12,87396882,1719763106
2008,1,100336804,1836020708
2008,2,125734229,1888696804
2008,3,150929370,1668647250
2008,4,119241412,1041463163
2008,5,78603045,780652877
2008,6,58718347,872860052
2008,7,25284986,804165010
2008,8,15073035,674660164
2008,9,13444938,494556141
2008,10,30204485,1956533639
2008,11,54859362,1770092128
2008,12,66971586,1668263869
2009,1,99934953,1571905719
2009,2,99601348,1702454398
2009,3,143879751,1043785149
2009,4,104359130,903399997
2009,5,70024775,700816631
2009,6,35827565,746873282
2009,7,14294631,618525330
2009,8,13196062,687034546
2009,9,13615442,462744846
2009,10,35163233,2137269786
2009,11,65961282,3299584065
2009,12,75494747,2569699237
2010,1,114566021,2540223651
2010,2,124233060,1837252524
2010,3,183995841,1406572242
2010,4,135588001,608475829
2010,5,96689107,352767464
2010,6,56467068,301759668
2010,7,25918299,405149528
2010,8,15948706,643054105
2010,9,18271562,816948644
2010,10,32784054,3594727245
2010,11,65843403,3416531504
2010,12,86249358,2714785350
2011,1,119045881,2709902699
2011,2,164306721,2488744968
2011,3,208216509,1826752627
2011,4,155145073,960921884
2011,5,101145805,497448258
2011,6,66211941,458111693
2011,7,30691394,402428555
2011,8,15361251,634382227
2011,9,17414070,694642976
2011,10,28734985,2606946002
2011,11,54031921,2426024903
2011,12,98512159,1905712354
2012,1,116314568,2242366369
2012,2,163481404,2043786309
2012,3,210923029,1630138170
2012,4,145157754,1117738831
2012,5,101536782,1024085540
2012,6,61418454,801469156
2012,7,22542688,1166010698
2012,8,14284760,1267198087
2012,9,12790880,1659675173
2012,10,36123896,4671385966
2012,11,68285554,4209675188
2012,12,86025609,2973846322
2013,1,121281012,3083515201
2013,2,164868221,2283856119
2013,3,228269907,1158214685
2013,4,144062517,546244146
2013,5,86170789,347483402
2013,6,48141351,316242933
2013,7,20877974,230334756
2013,8,14694105,272308939
2013,9,11503786,832007245
2013,10,37957305,4149994287
2013,11,86098688,4689124896
2013,12,112137714,3696508434
2014,1,132960381,3808069205
2014,2,145823447,2958781283
2014,3,190485143,1799107982
2014,4,118021632,685288021
2014,5,93742216,503950768
2014,6,50524537,364025770
2014,7,18101963,288516999
2014,8,13680724,252164257
2014,9,10999733,960793480
2014,10,39742015,3868429034
2014,11,81665964,4796051712
2014,12,104271776,3637625551
2015,1,126682504,3066056057
2015,2,156254508,1961449198
2015,3,193699330,1081619892
2015,4,131278820,569611797
2015,5,85121730,489803825
2015,6,45647144,399181413
2015,7,24846635,439471655
2015,8,17088292,477996416
2015,9,11002503,880577152
2015,10,31221705,3693398810
2015,11,71632407,3393311754
2015,12,97667823,2460650580
2016,1,112721187,2178001053
2016,2,168607847,2062374601
2016,3,183363169,956751612
2016,4,152415213,512643030
2016,5,100725071,357599772
2016,6,51703351,453526359
2016,7,23547099,1159018241
2016,8,16261344,1723671655
2016,9,13215668,1516753088
2016,10,28130358,4482728117
2016,11,86551070,4195995512
2016,12,102436973,3285557650
2017,1,102783104,2837746400
2017,2,165393310,1835060288
2017,3,251153742,1291651704
2017,4,146816401,964459631
2017,5,89066739,580819978
2017,6,35075913,687560641
2017,7,18123991,871422998
2017,8,14202432,1133261413
2017,9,11412061,1714391653
2017,10,27024223,3708945739
2017,11,62961726,3529020687
2017,12,96860554,2377661750
2018,1,133108140,2196527236
2018,2,195453600,1638130524
2018,3,205113022,1284671733
2018,4,141333137,896365203
2018,5,79372432,1265857407
2018,6,29608161,1221069038
2018,7,15711114,1258513068
2018,8,12997986,1237523273
2018,9,11052844,1160235948
2018,10,22812344,1904783049
2018,11,59727020,1694889673
2018,12,84653964,1399186554
2019,1,108193268,1698008495
2019,2,126464885,1604303259
2019,3,192601690,1388740203
2019,4,138485448,900265075
2019,5,79001506,873353636
2019,6,35539946,1160314171
2019,7,16984047,1320519403
2019,8,15108854,1757349487
2019,9,14012305,1373995500
2019,10,26308151,2115640933
2019,11,60885676,2476088336
2019,12,84873954,2059107670
2020,1,110924836,1954840496
2020,2,171767821,1005152257
2020,3,201231998,944016991
2020,4,122708243,783880798
2020,5,75644260,704320137
2020,6,36090558,645792528
2020,7,20561815,793474898
2020,8,15510692,1646514743
1 year month citrus_export_value soybeans_export_value
2 2002 1 81939159 794068114
3 2002 2 91145699 659050185
4 2002 3 115051310 345893170
5 2002 4 86779722 246909123
6 2002 5 45814736 247943895
7 2002 6 36015544 249802757
8 2002 7 18333834 339539503
9 2002 8 15058915 243321058
10 2002 9 13271588 191216281
11 2002 10 26590694 812436788
12 2002 11 53639481 919308934
13 2002 12 61170830 701085611
14 2003 1 79069804 991310046
15 2003 2 91905948 944352353
16 2003 3 112045016 588018642
17 2003 4 82714650 424072090
18 2003 5 65807931 235398657
19 2003 6 37152480 221053757
20 2003 7 22025720 250246921
21 2003 8 15347844 212711390
22 2003 9 12997666 230478511
23 2003 10 37309973 1246026488
24 2003 11 54333917 1457358978
25 2003 12 69999550 1164256986
26 2004 1 94487872 968427385
27 2004 2 116664557 714701271
28 2004 3 148210057 674486035
29 2004 4 89528321 304579006
30 2004 5 45931753 189713599
31 2004 6 32178545 210817937
32 2004 7 21438553 141448559
33 2004 8 10944527 100759947
34 2004 9 9966250 303876760
35 2004 10 17371687 1053528352
36 2004 11 46297575 1070602202
37 2004 12 59646056 953920362
38 2005 1 79290510 785578490
39 2005 2 92361489 843596786
40 2005 3 113556560 698225482
41 2005 4 103259234 412721537
42 2005 5 57853049 315114212
43 2005 6 33253877 260911572
44 2005 7 20652393 160938521
45 2005 8 13516221 210525670
46 2005 9 12209375 226293704
47 2005 10 16136054 878190446
48 2005 11 39164454 909878711
49 2005 12 69586703 580244470
50 2006 1 90647111 732623108
51 2006 2 105474601 719732967
52 2006 3 119582761 673898856
53 2006 4 85317096 282056498
54 2006 5 79193517 270076101
55 2006 6 44478040 262376265
56 2006 7 17752553 309444780
57 2006 8 12519827 326320838
58 2006 9 9924518 402749394
59 2006 10 27667251 1182460249
60 2006 11 60010909 889549580
61 2006 12 68907983 897594351
62 2007 1 105326246 1092606423
63 2007 2 90297551 990018125
64 2007 3 120445250 784247691
65 2007 4 96608536 575051574
66 2007 5 53944346 336040732
67 2007 6 27553378 410972130
68 2007 7 16198822 329393569
69 2007 8 9461235 435126692
70 2007 9 9000139 571788118
71 2007 10 29664916 1380861708
72 2007 11 78976704 1378173182
73 2007 12 87396882 1719763106
74 2008 1 100336804 1836020708
75 2008 2 125734229 1888696804
76 2008 3 150929370 1668647250
77 2008 4 119241412 1041463163
78 2008 5 78603045 780652877
79 2008 6 58718347 872860052
80 2008 7 25284986 804165010
81 2008 8 15073035 674660164
82 2008 9 13444938 494556141
83 2008 10 30204485 1956533639
84 2008 11 54859362 1770092128
85 2008 12 66971586 1668263869
86 2009 1 99934953 1571905719
87 2009 2 99601348 1702454398
88 2009 3 143879751 1043785149
89 2009 4 104359130 903399997
90 2009 5 70024775 700816631
91 2009 6 35827565 746873282
92 2009 7 14294631 618525330
93 2009 8 13196062 687034546
94 2009 9 13615442 462744846
95 2009 10 35163233 2137269786
96 2009 11 65961282 3299584065
97 2009 12 75494747 2569699237
98 2010 1 114566021 2540223651
99 2010 2 124233060 1837252524
100 2010 3 183995841 1406572242
101 2010 4 135588001 608475829
102 2010 5 96689107 352767464
103 2010 6 56467068 301759668
104 2010 7 25918299 405149528
105 2010 8 15948706 643054105
106 2010 9 18271562 816948644
107 2010 10 32784054 3594727245
108 2010 11 65843403 3416531504
109 2010 12 86249358 2714785350
110 2011 1 119045881 2709902699
111 2011 2 164306721 2488744968
112 2011 3 208216509 1826752627
113 2011 4 155145073 960921884
114 2011 5 101145805 497448258
115 2011 6 66211941 458111693
116 2011 7 30691394 402428555
117 2011 8 15361251 634382227
118 2011 9 17414070 694642976
119 2011 10 28734985 2606946002
120 2011 11 54031921 2426024903
121 2011 12 98512159 1905712354
122 2012 1 116314568 2242366369
123 2012 2 163481404 2043786309
124 2012 3 210923029 1630138170
125 2012 4 145157754 1117738831
126 2012 5 101536782 1024085540
127 2012 6 61418454 801469156
128 2012 7 22542688 1166010698
129 2012 8 14284760 1267198087
130 2012 9 12790880 1659675173
131 2012 10 36123896 4671385966
132 2012 11 68285554 4209675188
133 2012 12 86025609 2973846322
134 2013 1 121281012 3083515201
135 2013 2 164868221 2283856119
136 2013 3 228269907 1158214685
137 2013 4 144062517 546244146
138 2013 5 86170789 347483402
139 2013 6 48141351 316242933
140 2013 7 20877974 230334756
141 2013 8 14694105 272308939
142 2013 9 11503786 832007245
143 2013 10 37957305 4149994287
144 2013 11 86098688 4689124896
145 2013 12 112137714 3696508434
146 2014 1 132960381 3808069205
147 2014 2 145823447 2958781283
148 2014 3 190485143 1799107982
149 2014 4 118021632 685288021
150 2014 5 93742216 503950768
151 2014 6 50524537 364025770
152 2014 7 18101963 288516999
153 2014 8 13680724 252164257
154 2014 9 10999733 960793480
155 2014 10 39742015 3868429034
156 2014 11 81665964 4796051712
157 2014 12 104271776 3637625551
158 2015 1 126682504 3066056057
159 2015 2 156254508 1961449198
160 2015 3 193699330 1081619892
161 2015 4 131278820 569611797
162 2015 5 85121730 489803825
163 2015 6 45647144 399181413
164 2015 7 24846635 439471655
165 2015 8 17088292 477996416
166 2015 9 11002503 880577152
167 2015 10 31221705 3693398810
168 2015 11 71632407 3393311754
169 2015 12 97667823 2460650580
170 2016 1 112721187 2178001053
171 2016 2 168607847 2062374601
172 2016 3 183363169 956751612
173 2016 4 152415213 512643030
174 2016 5 100725071 357599772
175 2016 6 51703351 453526359
176 2016 7 23547099 1159018241
177 2016 8 16261344 1723671655
178 2016 9 13215668 1516753088
179 2016 10 28130358 4482728117
180 2016 11 86551070 4195995512
181 2016 12 102436973 3285557650
182 2017 1 102783104 2837746400
183 2017 2 165393310 1835060288
184 2017 3 251153742 1291651704
185 2017 4 146816401 964459631
186 2017 5 89066739 580819978
187 2017 6 35075913 687560641
188 2017 7 18123991 871422998
189 2017 8 14202432 1133261413
190 2017 9 11412061 1714391653
191 2017 10 27024223 3708945739
192 2017 11 62961726 3529020687
193 2017 12 96860554 2377661750
194 2018 1 133108140 2196527236
195 2018 2 195453600 1638130524
196 2018 3 205113022 1284671733
197 2018 4 141333137 896365203
198 2018 5 79372432 1265857407
199 2018 6 29608161 1221069038
200 2018 7 15711114 1258513068
201 2018 8 12997986 1237523273
202 2018 9 11052844 1160235948
203 2018 10 22812344 1904783049
204 2018 11 59727020 1694889673
205 2018 12 84653964 1399186554
206 2019 1 108193268 1698008495
207 2019 2 126464885 1604303259
208 2019 3 192601690 1388740203
209 2019 4 138485448 900265075
210 2019 5 79001506 873353636
211 2019 6 35539946 1160314171
212 2019 7 16984047 1320519403
213 2019 8 15108854 1757349487
214 2019 9 14012305 1373995500
215 2019 10 26308151 2115640933
216 2019 11 60885676 2476088336
217 2019 12 84873954 2059107670
218 2020 1 110924836 1954840496
219 2020 2 171767821 1005152257
220 2020 3 201231998 944016991
221 2020 4 122708243 783880798
222 2020 5 75644260 704320137
223 2020 6 36090558 645792528
224 2020 7 20561815 793474898
225 2020 8 15510692 1646514743

View File

@ -662,4 +662,70 @@ FROM meat_poultry_egg_establishments
WHERE meat_processing = TRUE AND
poultry_processing = TRUE;
----------------------------------------------------------------------------
-- Chapter 11: Creating Your First Database and Table
----------------------------------------------------------------------------
-- 1. In Listing 11-2, the correlation coefficient, or r value, of the
-- variables pct_bachelors_higher and median_hh_income was about .70.
-- Write a query to show the correlation between pct_masters_higher and
-- median_hh_income. Is the r value higher or lower? What might explain
-- the difference?
-- Answer:
-- The r value of pct_bachelors_higher and median_hh_income is about .60, which
-- shows a lower connection between percent master's degree or higher and
-- income than percent bachelor's degree or higher and income. One possible
-- explanation is that attaining a master's degree or higher may have a more
-- incremental impact on earnings than attaining a bachelor's degree.
SELECT
round(
corr(median_hh_income, pct_bachelors_higher)::numeric, 2
) AS bachelors_income_r,
round(
corr(median_hh_income, pct_masters_higher)::numeric, 2
) AS masters_income_r
FROM acs_2014_2018_stats;
-- 2. Using the exports data, create a 12-month rolling sum using the values
-- in the column soybeans_export_value and the query pattern from
-- Listing 11-8. Copy and paste the results from the pgAdmin output
-- pane and graph the values using Excel. What trend do you see?
-- Answer: Soybean exports rose considerably during the late 2000s
-- and dropped off considerably starting in 2018 following the start of the
-- U.S. trade war with China.
SELECT year, month, soybeans_export_value,
round(
sum(soybeans_export_value)
OVER(ORDER BY year, month
ROWS BETWEEN 11 PRECEDING AND CURRENT ROW), 0)
AS twelve_month_avg
FROM us_exports
ORDER BY year, month;
-- 3. As a bonus challenge, revisit the libraries data in the table
-- pls_fy2018_libraries in Chapter 9. Rank library agencies based on the rate
-- of visits per 1,000 population (variable popu_lsa), and limit the query to
-- agencies serving 250,000 people or more.
-- Answer:
-- Pinellas Public Library Coop tops the rankings with 9,705 visits per
-- thousand people (or roughly 10 visits per person).
SELECT
libname,
stabr,
visits,
popu_lsa,
round(
(visits::numeric / popu_lsa) * 1000, 1
) AS visits_per_1000,
rank() OVER (ORDER BY (visits::numeric / popu_lsa) * 1000 DESC)
FROM pls_fy2018_libraries
WHERE popu_lsa >= 250000;