-------------------------------------------------------------- -- Practical SQL: A Beginner's Guide to Storytelling with Data -- by Anthony DeBarros -- Chapter 11 Code Examples -------------------------------------------------------------- -- Listing 11-1: Create Census 2011-2015 ACS 5-Year stats table and import data CREATE TABLE acs_2011_2015_stats ( geoid varchar(14) CONSTRAINT geoid_key PRIMARY KEY, county varchar(50) NOT NULL, st varchar(20) NOT NULL, pct_travel_60_min numeric(5,3) NOT NULL, pct_bachelors_higher numeric(5,3) NOT NULL, pct_masters_higher numeric(5,3) NOT NULL, median_hh_income integer, CHECK (pct_masters_higher <= pct_bachelors_higher) ); COPY acs_2011_2015_stats FROM 'C:\YourDirectory\acs_2011_2015_stats.csv' WITH (FORMAT CSV, HEADER, DELIMITER ','); SELECT * FROM acs_2011_2015_stats; -- Listing 11-2: Using corr(Y, X) to measure the relationship between -- education and income SELECT corr(median_hh_income, pct_bachelors_higher) AS bachelors_income_r FROM acs_2011_2015_stats; -- Listing 11-3: Using corr(Y, X) on additional variables SELECT round( corr(median_hh_income, pct_bachelors_higher)::numeric, 2 ) AS bachelors_income_r, round( corr(pct_travel_60_min, median_hh_income)::numeric, 2 ) AS income_travel_r, round( corr(pct_travel_60_min, pct_bachelors_higher)::numeric, 2 ) AS bachelors_travel_r FROM acs_2011_2015_stats; -- Listing 11-4: Regression slope and intercept functions SELECT round( regr_slope(median_hh_income, pct_bachelors_higher)::numeric, 2 ) AS slope, round( regr_intercept(median_hh_income, pct_bachelors_higher)::numeric, 2 ) AS y_intercept FROM acs_2011_2015_stats; -- Listing 11-5: Calculating the coefficient of determination, or r-squared SELECT round( regr_r2(median_hh_income, pct_bachelors_higher)::numeric, 3 ) AS r_squared FROM acs_2011_2015_stats; -- Bonus: Additional stats functions. -- Variance SELECT var_pop(median_hh_income) FROM acs_2011_2015_stats; -- Standard deviation of the entire population SELECT stddev_pop(median_hh_income) FROM acs_2011_2015_stats; -- Covariance SELECT covar_pop(median_hh_income, pct_bachelors_higher) FROM acs_2011_2015_stats; -- Listing 11-6: The rank() and dense_rank() window functions CREATE TABLE widget_companies ( id bigserial, company varchar(30) NOT NULL, widget_output integer NOT NULL ); INSERT INTO widget_companies (company, widget_output) VALUES ('Morse Widgets', 125000), ('Springfield Widget Masters', 143000), ('Best Widgets', 196000), ('Acme Inc.', 133000), ('District Widget Inc.', 201000), ('Clarke Amalgamated', 620000), ('Stavesacre Industries', 244000), ('Bowers Widget Emporium', 201000); SELECT company, widget_output, rank() OVER (ORDER BY widget_output DESC), dense_rank() OVER (ORDER BY widget_output DESC) FROM widget_companies; -- Listing 11-7: Applying rank() within groups using PARTITION BY CREATE TABLE store_sales ( store varchar(30), category varchar(30) NOT NULL, unit_sales bigint NOT NULL, CONSTRAINT store_category_key PRIMARY KEY (store, category) ); INSERT INTO store_sales (store, category, unit_sales) VALUES ('Broders', 'Cereal', 1104), ('Wallace', 'Ice Cream', 1863), ('Broders', 'Ice Cream', 2517), ('Cramers', 'Ice Cream', 2112), ('Broders', 'Beer', 641), ('Cramers', 'Cereal', 1003), ('Cramers', 'Beer', 640), ('Wallace', 'Cereal', 980), ('Wallace', 'Beer', 988); SELECT category, store, unit_sales, rank() OVER (PARTITION BY category ORDER BY unit_sales DESC) FROM store_sales; -- Listing 11-8: Create and fill a 2015 FBI crime data table CREATE TABLE fbi_crime_data_2015 ( st varchar(20), city varchar(50), population integer, violent_crime integer, property_crime integer, burglary integer, larceny_theft integer, motor_vehicle_theft integer, CONSTRAINT st_city_key PRIMARY KEY (st, city) ); COPY fbi_crime_data_2015 FROM 'C:\YourDirectory\fbi_crime_data_2015.csv' WITH (FORMAT CSV, HEADER, DELIMITER ','); SELECT * FROM fbi_crime_data_2015 ORDER BY population DESC; -- Listing 11-9: Find property crime rates per thousand in cities with 500,000 -- or more people SELECT city, st, population, property_crime, round( (property_crime::numeric / population) * 1000, 1 ) AS pc_per_1000 FROM fbi_crime_data_2015 WHERE population >= 500000 ORDER BY (property_crime::numeric / population) DESC;